China best 900bar 1000bar High Pressure Oil Free Diaphragm Compressor Hydrogen Gas Compressor Manufacture arb air compressor

Product Description

Diaphragm Compressor 100% purity no leakage Oil-free Oxygen Booster Compressor 

The diaphragm compressor booster is a special structure of the volume-type compressor with high compression ratio, good leak tightness, compressed gas without lubricating oil and other CHINAMFG impurities contaminated features, So it’s suitable for high purity compression, rare, valuable, inflammable, explosive, toxic, harmful, corrosive, and high pressure gas

Advantages of Diaphragm compressor:
1.  Oil-free compression due to the hermetic separation between gas and oil chamber.
2.  Abrasion-free compression due to static seals in the gas stream
3.  Automatic shutdown in case of a diaphragm failure prevents damage
4.  High Compression Ratios-Discharge pressure up to 1000bar.
5.  Contamination Free Compression
6.  Corrosion Resistance
7.  High Reliability

As a displacement compressor with special, diaphragm compressor is characterized by large compression ratiogood sealing performance, and that the compress air will not be polluted by lubricant or other CHINAMFG impurities.Therefore diaphragm compressor is applicable to compress high-purityrare and precious, flammable and explosive, toxic and hazardous,corrosive and high pressure gases.
CHINAMFG diaphragm compressors consist of 4 types that are Z, V, L and D type.The exhaust pressure ranges from 1.3 to 100 Mpa. The products are widely used in the industries of national defense, scientific research, petrochemical, nuclear power, parmaceutical, food-stuff and gas separation.

Inquiry to us!
Note:for the other customizing process gas compressor, please kindly send below information to our factory to calculate the producing cost for your item.
Clients’ inquiries should contain related parameters 
A. The gas compression medium 
B. Gas composition? or the gas purity?
C. The flow rate: _____Nm3/hr
D. Inlet pressure: _____ Bar (gauge pressure or absolute pressure)
E. Discharge pressure: _____ Bar (gauge pressure or absolute pressure)
F. Inlet temperature
G.Discharge temperature
H. Cooling water temperature as well as other technical requirement.

Technical Paramter of Oil Free Diaphragm Compressor

GZ type Diaphragm Compressor Technical Parameters
No. Model F.A.D (Nm3/min) Inlet Pressure 
( Mpa)
Exhuast Pressure 
Weight (t)  
1 G2V-10/8-160 10 0.8 16 5.5 400 1550*900*1050 0.8 380
2 G2V-5/3.5~150 5 0.35 15 5.5 400 1550*900*1050 0.8 380
3 G2V-10/4~320 10 0.4 32 5.5 430 1650*850*1250 0.8 380
4 G3V-240/5~12 240 0.5 1.2 18.5 400 1860*1200*1585 2 380
5 G3V-1200/75~83 1200 7.5 8.3 18.5 400 1780*1050*1750 1.8 380
6 G3V-80/13~150 80 1~1.5 15 22 330 2400*1350*1465 2.1 380
7 G3V-30/5~315 30 0.5 31.5 15 400 2571*955*1455 1.8 380
8 G3V-80/7~150 80 0.7 15 22 400 2302*1385*1444 2.5 380
9 G2V-25/6~150 25 0.6 15 7.5 400 1500*775*1075 0.8 380
10 G2.5V-10/160 10 Normal 16 7.5 400 1650*1571*1400 0.95 380
11 G2.5V-20/1~160 20 0.1 16 11 400 1650*1571*1400 0.95 380
12 G2.5V-16/2.5~160 16 0.25 16 7.5 400 1650*1571*1400 0.95 380
13 G3V-100/24~125 100 2.4 12.5 22 400 2160*1250*1500 1.8 380
14 G4V-220/99-349 220 7.0~25 34.9 37 400 2492*1840*1610 3.2 380
15 G2Z-45/150~350 45 10~20 35 7.5 400 1610*790*1380 0.55 380
16 G2Z-5/30~400 5 3 40 5.5 400 1560*790*1470 0.55 380
17 G2.5Z-30/32~170 30 3.2 17 7.5 400 1550*650*1530 0.7 380
18 G3Z-600/75~83 600 7.5 8.3 11 400 1780*1050*1750 1.3 380
19 G3Z-85/100~350 85 5~25 35 18.5 400 1900*1240*1760 1.6 380
20 G3Z-150/150~350 150 15 35 18.5 400 1780*1050*1750 1.8 380
21 G2.5Z-40/7~30 40 0.7 3 7.5 400 1653*1372*1470 0.9 380
22 G2.5Z-100/20~35 100 2 3.5 5.5 400 1330*750*1530 0.9 380
23 GV3-110/8~150 110 0.8 15 30 400 2370*1458*1630 3 380
24 G3V-150/3.5~30 150 0.35~0.55 3 30 400 2543*1835*2036 3.21 380
25 G3V-60/0.38~9.3 60 0.038 0.93 15 400 2030*1520*1750 72 380


No. Model F.A.D (Nm3/min) Inlet Pressure 
( Mpa)
Exhuast Pressure 
Weight (t)  
27 GD6-140/0.5~6.5 140 0.05 0.65 45 363 4300*3300*2100 10 380
28 GD6-150/0.5~6 150 0.05 0.6 45 363 4300*3300*2100 10 380
29 GD6-868/11~31 868 1.1 3.1 75 365 4215*3250*2210 10 380
30 GD6-240/6~150 240 0.6 15 75 400 3500*2300*1600 8.6 380
31 GD6-1000/14~50 1000 1.4 5 75 400 3500*2300*1750 8.2 380
32 GD6H-570/1.5~6 570 0.15 0.6 55 365 4300*3300*2100 13 380
33 GD6H-212/0.2~6 212 0.02 0.6 55 365 4300*3300*2100 13 380
34 GD6H-750/4~22 750 0.4 2.2 90 420 4460*3340*2200 10.8 380
34 GD6H-450/0.8~5 450 0.08 0.5 55 420 4460*3400*2300 13 380
36 GD8-920/8~30 920 0.8 3 110 365 4340*3520*2390 11 380
37 GD8T-90/160 90 Normal 16 55 400 4500*3800*2300 14 380
38 GD-120/70~800 120 7 80 37 400 3100*2000*1650 4.2 380
39 GD-50/35 50 Normal 3.5 22 400 2700*1500*1400 3.4 380
40 GL4-240/20~200 240 2 20 55 400 3340*1900*2157 4 380
41 GL4-300/6~30 300 0.6 3 45 400 3340*1900*2200 4.5 380
42 GD8-1000/14~50 1000 1.4 16 75 400 3500*2300*1750 8.2 380
43 GD8H-750/3~21 750 0.3 2.1 100 420 3900*3200*1900 13.8 380
44 GD8-400/6~250 400 0.6 25 132 400 3900*2949*1560 12 380
45 GD25-290/200 290 0 19.6 220 363 10000*6000*3000 30 380
46 GD25-290/4~200 660 0.4 19.6 250 363 10000*6000*3000 30 380
47 GD25-290/10~200 900 1 19.6 300 363 10000*6000*3000 30 380
48 GD25-290/20~200 1500 2 19.6 300 363 10000*6000*3000 30 380


No. Model F.A.D (Nm3/h) Inlet Pressure 
( Mpa)
Exhuast Pressure 
Weight (t)  
1 GL-40/100 40 0 10 30 400 3700*1750*2000 3.8
2 GL-900/300-500 900 30 50 55 420 3500*2350*2300 3.5
3 GL-100/3-200 100 0.3 20 55 400 3700*1750*2150 5.2
4 GL-48/140 48 0 14 22 400 3800*1750*2100 5.7
5 GL-200/6-60 200 0.6 6 45 400 3800*1750*2100 5
6 GL-140/6-200 140 0.6 20 55 363 3500*1380*2350 4.5
7 GL-900/10-15 900 1 1.5 37 420 3670*2100*2300 6.5
8 GL-770/6-20 770 0.6 2 55 420 4200*2100*2400 7.6
9 GL-90/4-200 90 0.4 20 45 400 3500*2100*2400 7
10 GL-1900/21-30 1900 2.1 3 55 363 3700*2100*2400 7
11 GL-300/20-200 300 2 20 45 420 3670*2100*2300 6.5
12 GL-200/15-200 200 1.5 20 45 420 3500*2100*2300 6
13 GL-330/8-30 330 0.8 3 45 420 3570*1600*2200 4
14 GL-150/6-200 150 0.6 20 55 400 3500*1600*2100 3.8
15 GL-300/6-25 300 0.6 2.5 45 400 3450*1600*2100 4
16 GL4-240/20~200 240 2 20 55 400 3340*1900*2157 4
17 GL4-300/6~30 300 0.6 3 45 400 3340*1900*2200 4.5

Main technical data

All the cylinders comprise upper plate, diaphragms, and cylinder body etc. The diaphragms are clamped between the cylinder cover and cylinder body. The cylinder cover and cylinder body each has a concave recess hollowed out in their contacting faces. The gas cylinder is formed between cylinder cover concave recess and diaphragms. Both suction valve and discharge valve are fitted on the upper plate. Among of them, the discharge valve is located on the center of the upper plate. The evenly located small oil holes are on the cylinder body to deliver the oil pressure inside the oil cylinder to the bottom of diaphragms (each diaphragm compressor’s cylinder has 3 piece diaphragm.) 

Pressure Regulating Valve 
The oil pressure of oil cylinder is regulated by the tension of the valve spring.In case the oil pressure is higher than the regulated value, turn the regulating bolt counter-clockwise to loosen the spring tension, but turn the regulating bolt clockwise to tighten the spring, when the oil pressure is lower than the regulated value. When the oil pressure meets the required value, the regulating bolt must be locked with a lock-nut. The oil pressure of the oil cylinder shall always be higher than the discharge pressure by 15~20%. But the oil and gas differential pressure shall not be lower than 0.3MPa or higher than 1.5MPa. 

The cooler structure is the double-wall pipe type. The circular space between the outer and inner pipe is the cooling water passage and the inner pipe is the gas passage. Normally the water inlet port is at the lower side and the water outlet port is at the upper side. The flow direction of cooling water and gas is on the contrary.

Oil Pressure Measuring Device 
The measuring device of oil cylinder discharge pressure consists of shock-proof pressure gauge, check valve and unloading valve. The case of the pressure gauge is totally airproof and filled with damping liquid. The inner devices of gauge is immersed in the liquid, which makes the pressure gauge hands stable through the function of the viscosity of damping liquid. The unloading valve is fitted under the gauge to discharge the remained air in the oil pipeline and to unload the oil pressure gauge. Also the check valve connecting with oil cylinder through pipeline is fitted under the unloading valve.   

Oil pipes 
Oil pipes consist of lube oil pipe and oil pressure secure system.
The lubrication for the driving device adopts gear oil pump circulation pressure lubricating. The lube oil stored in the frame oil tank enters into the gear oil pump after being filtered and is pressed into the oil holes in the crankshaft through the gear oil pump to lubricate the crankshaft friction surface. At the same time, part of the lube oil reaches the crosshead pin and crosshead along the oil holes in the connecting rod to lubricate the friction surface. The oil pressure of gear oil pump shall be kept between 0.3~0.5Mpa, and the bearings at the 2 ends of crankshaft is splash lubricated. 
Oil pressure secure system consists of oil compensating pipe, pressure-measuring pipe and oil return pipe. The oil output from the oil compensating pump will supplement oil for compressor cylinders through the oil compensating pipe and the excess oil returns to the crankcase through the pressure-regulating valve.

Q1: What’s your delivery time?
A: Generally CHINAMFG with 20-30 days, Reciprocating compressor & diaphragm high pressure gas comrpessor with 12-20weeks to customize producing.

Q2: How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary. 

Q3: How long could your air compressor be used?
A: Generally, more than 10 years.

Q4: Can you do OEM for us?
A: Yes, of course. We have around 2 decades OEM experience.And also we can do ODM for you.

Q5: What’s payment term?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, Trade Assurance and etc. Also we could accept USD, RMB, GBP, Euro and other currency.

Q6: How about your customer service?
A: 24 hours on-line service available. 48hours problem sovled promise.

Q7: How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service. 

Q8. Are you factory?
A4: Absolutely! You have touched the primary sources of Air /Gas Compressor. We are factory.

How to contact with us?
Send your Inquiry Details in the Below, or Click “Send inquiry to supplier” to check more other Gas Compressor machine equipment!

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1
Warranty: 1
Lubrication Style: Oil-free
Cooling System: Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Angular
US$ 18888/Piece
1 Piece(Min.Order)

Request Sample



air compressor

How Do You Troubleshoot Common Issues with Gas Air Compressors?

Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:

1. Start with Safety Precautions:

Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.

2. Check Power Supply and Connections:

Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.

3. Check Fuel Supply:

For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.

4. Inspect Air Filters:

Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.

5. Check Oil Level and Quality:

If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.

6. Inspect Spark Plug:

If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.

7. Check Belts and Pulleys:

Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.

8. Listen for Unusual Noises:

During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.

9. Consult the Owner’s Manual:

If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.

10. Seek Professional Assistance:

If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.

Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.

air compressor

Can Gas Air Compressors Be Used for Gas Line Maintenance?

Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:

1. Clearing Debris and Cleaning:

Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.

2. Pressure Testing:

Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.

3. Leak Detection:

Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.

4. Valve and Equipment Maintenance:

Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.

5. Pipe Drying:

Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.

6. Precautions and Regulations:

When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.

It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.

In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.

air compressor

What Safety Precautions Should Be Taken When Operating Gas Air Compressors?

Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:

1. Read and Follow the Manufacturer’s Instructions:

Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.

2. Provide Adequate Ventilation:

Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.

3. Wear Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.

4. Perform Regular Maintenance:

Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.

5. Preventive Measures for Fuel Handling:

If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:

  • Store fuel in approved containers and in well-ventilated areas away from ignition sources.
  • Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
  • Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
  • Never smoke or use open flames near the compressor or fuel storage areas.

6. Use Proper Electrical Connections:

If the gas air compressor requires electrical power, follow these electrical safety precautions:

  • Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
  • Avoid using extension cords unless recommended by the manufacturer.
  • Inspect electrical cords and plugs for damage before use.
  • Do not overload electrical circuits or use improper voltage sources.

7. Secure the Compressor:

Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.

8. Familiarize Yourself with Emergency Procedures:

Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.

It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.

China best 900bar 1000bar High Pressure Oil Free Diaphragm Compressor Hydrogen Gas Compressor Manufacture   arb air compressorChina best 900bar 1000bar High Pressure Oil Free Diaphragm Compressor Hydrogen Gas Compressor Manufacture   arb air compressor
editor by CX 2024-04-30