China Professional Nitrogen High Pressure Compressor for Nitrogen Production Plant with Best Sales

Product Description


Nitrogen High Pressure Compressor for Nitrogen Production Plant 


Product Overview

Nitrogen High Pressure Compressor refers to a compressor used to pressurize oxygen and realize transportation or storage. There are 2 types of general Nitrogen High Pressure Compressor.

One is that the hospital’s PSA oxygen generator needs to be pressurized to supply various wards and operating rooms. It provides 7-10 kg of line pressure.

The other type of PSA oxygen generator needs to be stored in a high-pressure container for convenient use. The storage pressure is generally 150barg, 200barg, or a higher pressure of 300barg.

Industrial applications for filling cylinder Nitrogen High Pressure Compressor include low or medium pressure Nitrogen High Pressure Compressor systems for VSA applications in steel mills, paper mills  and water treatment plants.



1. Totally oil free
2. Silent working noise, less than 75dB, can working in medical station scope silent
3. Low rotation speed, long working life
4. Easy operation, staff can operate after simple training


Technical Specification




Flow Rate

Inlet Pressure Discharge Pressure Power Weight Weight
GOW-3/4-150 3m³/h 3-4bar 150bar 3KW 140kg 850*640*680mm
GOW-5/4-150 5m³/h 3-4bar 150bar 3.5KW 320kg 1000*800*1100mm
GOW-10/4-150 10m³/h 3-4bar 150bar 5KW 320kg 1000*800*1100mm
GOW-15/4-150 15m³/h 3-4bar 150bar 11.5KW 960kg 1650*950*1470mm
GOW-20/4-150 20m³/h 3-4bar 150bar 12KW 960kg 1650*950*1470mm
GOW-30/4-150 30m³/h 3-4bar 150bar 13.5KW 960kg 1650*950*1470mm
GOW-40/4-150 40m³/h 3-4bar 150bar 15KW 960kg 1650*950*1470mm
GOW-50/4-150 50m³/h 3-4bar 150bar 17KW 960kg 1650*950*1470mm


Product Description

Fully bottle cylinder filling Nitrogen High Pressure Compressor, air-cooled and water-cooled 2 cooling modes, single-action and double-acting structure, vertical and angle type, high pressure oil-free lubrication Nitrogen High Pressure Compressor. Excellent performance, stable operation, high efficiency and energy saving, long service life, widely used in oxygen tanking, chemical process and plateau oxygen supply, together with oxygen generator to form a simple and safe high-pressure oxygen system.

The friction of Nitrogen High Pressure Compressor does not use oil lubrication. The friction seals such as piston rings and guide rings are made of special materials with self-lubricating properties.

The structure advantages are reflected in:
1 There is no oil lubrication in the whole compression system, which avoids the possibility of oil contact with high pressure and high purity oxygen, and ensures the safety of the machine;
2 The whole system has no lubrication and oil distribution system, the machine structure is simple, the control is convenient, and it is easy to operate;
3 The whole system is oil-free, so the compressed medium, oxygen, is non-polluting, and the oxygen purity of the inlet and outlet of the compressor is the same.


Product Configuration


Product Presentation

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: Medical
Noise Level: Low
Machine Size: Medium
US$ 10500/Set
1 Set(Min.Order)

Request Sample



air compressor

How Do Gas Air Compressors Compare to Diesel Air Compressors?

When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:

1. Fuel Efficiency:

Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.

2. Power Output:

Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.

3. Cost:

In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.

4. Maintenance Requirements:

Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.

5. Environmental Impact:

When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.

6. Portability and Mobility:

Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.

It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.

In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.

air compressor

Can Gas Air Compressors Be Used for Gas Line Maintenance?

Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:

1. Clearing Debris and Cleaning:

Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.

2. Pressure Testing:

Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.

3. Leak Detection:

Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.

4. Valve and Equipment Maintenance:

Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.

5. Pipe Drying:

Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.

6. Precautions and Regulations:

When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.

It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.

In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.

air compressor

Can Gas Air Compressors Be Used in Remote Locations?

Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:

1. Independence from Electrical Grid:

Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.

2. Mobility and Portability:

Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.

3. Fuel Versatility:

Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.

4. On-Site Power Generation:

In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.

5. Off-Grid Operations:

Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.

6. Emergency Preparedness:

Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.

7. Adaptability to Challenging Environments:

Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.

Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.

China Professional Nitrogen High Pressure Compressor for Nitrogen Production Plant   with Best SalesChina Professional Nitrogen High Pressure Compressor for Nitrogen Production Plant   with Best Sales
editor by CX 2024-05-08