Tag Archives: oxygen concentrator compressor

China best Compressor for Oxygen Concentrator Low Power Consumption and Quick Connection with Good quality

Product Description

 

Compressor for Oxygen Concentrator Low Power Consumption and Quick Connection         
  

Summary

Compressor for Oxygen Concentrator is a kind of mechanical equipment.  The working pressure range is large, different types of Compressor for Oxygen Concentrator can be selected to obtain different pressure areas, adjust the input air pressure output air pressure can be adjusted accordingly, can achieve extremely high pressure.

 

Product Features

Compressor for Oxygen Concentrator, oil free design, guide ring, piston ring, piston rod filler are self-lubricating material, oil free lubrication. Bearing parts are lubricated with high temperature resistant grease and do not contact with the compression medium to avoid pollution to the gas in the compression process and ensure the purity of the gas. Microcomputer controller control, with high exhaust temperature compressor, low intake pressure, high exhaust pressure alarm stop function, high automation level, compressor operation more reliable. Data remote display and remote control can be configured according to customer requirements.

Product Specification

Model

Capacity/

Flow Rate

Inlet Pressure Discharge Pressure Power Weight Dimension(L*W*H)
GOW-3/4-150 3m³/h 3-4bar 150bar 3kw 140kg 850*640*680mm
GOW-5/4-150 5m³/h 3-4bar 150bar 3.5kw 320kg 1000*800*1100mm
GOW-10/4-150 10m³/h 3-4bar 150bar 5kw 320kg 1000*800*1100mm
GOW-15/4-150 15m³/h 3-4bar 150bar 11.5kw 960kg 1650*950*1470mm
GOW-20/4-150 20m³/h 3-4bar 150bar 12kw 960kg 1650*950*1470mm
GOW-30/4-150 30m³/h 3-4bar 150bar 13.5kw 960kg 1650*950*1470mm
GOW-40/4-150 40m³/h 3-4bar 150bar 15kw 960kg 1650*950*1470mm
GOW-50/4-150 50m³/h 3-4bar 150bar 17kw 960kg 1650*950*1470mm

 

Product Configuration

 

Product Application

This series Compressor for Oxygen Concentrator is widely used in air separation oxygen plant, medical, industrial and other oxygen industries. 
(1) The working pressure range is large. Different types of Compressor for Oxygen Concentrator can be used to obtain different pressure areas. The input and output pressure can be adjusted accordingly to achieve extremely high pressure. 
(2) Wide flow range, for all types of pumps only 0.1kg air pressure can work smoothly, at this time to obtain the minimum flow, adjust the air intake can get different flow. 
(3) Easy to control, from simple manual control to complete automatic control can meet the requirements. 
(4) Automatic restart. No matter what reason causes the pressure drop of the pressure retaining loop, it will automatically restart to supplement the leakage pressure and keep the loop pressure constant. 
(5) Safe operation, gas driven, no arc and spark, can be used in dangerous occasions. 
(6) The maximum energy saving can reach 70%, because maintaining the pressure does not consume any energy.

 

 

 

 

 

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: Medical
Noise Level: Low
Machine Size: Medium
Samples:
US$ 10470/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used for Well Drilling?

Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:

1. Air Drilling Method:

Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.

2. Benefits of Gas Air Compressors:

Gas air compressors offer several advantages for well drilling:

  • Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
  • Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
  • Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
  • Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.

3. Compressor Selection:

When selecting a gas air compressor for well drilling, several factors should be considered:

  • Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
  • Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
  • Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.

4. Safety Considerations:

It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.

5. Other Considerations:

While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.

In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.

air compressor

What Are the Key Components of a Gas Air Compressor Control Panel?

A gas air compressor control panel typically consists of several key components. Here’s a detailed explanation:

1. Power Switch:

The power switch allows the operator to turn the compressor on or off. It is usually a toggle switch or a push-button switch located on the control panel.

2. Pressure Gauges:

Pressure gauges display the compressed air pressure at different stages of the compression process. Commonly, there are two pressure gauges: one to measure the incoming air pressure (suction pressure) and another to measure the outgoing compressed air pressure (discharge pressure).

3. Control Knobs or Buttons:

Control knobs or buttons are used to adjust and set various parameters of the compressor operation. These controls may include pressure settings, on/off timers, automatic start/stop functions, and other operational parameters specific to the compressor model.

4. Emergency Stop Button:

An emergency stop button is a critical safety feature that immediately shuts down the compressor in case of an emergency. Pressing the emergency stop button cuts off power to the compressor and stops its operation.

5. Motor Start/Stop Buttons:

Motor start and stop buttons allow the operator to manually start or stop the compressor motor. These buttons are used when manual control of the motor is required, such as during maintenance or troubleshooting.

6. Control Indicators:

Control indicators include various lights or LEDs that provide visual feedback about the compressor’s status and operation. These indicators may include power indicators, motor running indicators, pressure indicators, and fault indicators to signal any malfunctions or abnormal conditions.

7. Control Panel Display:

Some gas air compressors feature a control panel display that provides real-time information and feedback on the compressor’s performance. The display may show parameters such as operating pressure, temperature, maintenance alerts, fault codes, and other relevant information.

8. Start/Stop Control Circuit:

The start/stop control circuit is responsible for initiating and controlling the motor start and stop sequences. It typically includes relays, contactors, and other electrical components that enable the control panel to safely start and stop the compressor motor.

9. Safety and Protection Devices:

Gas air compressor control panels may incorporate safety and protection devices to safeguard the compressor and prevent potential damage or hazardous situations. These devices can include overload relays, thermal protection, pressure relief valves, and other safety features.

10. Control Panel Enclosure:

The control panel enclosure houses and protects the electrical components and wiring of the control panel. It provides insulation, protection from dust and moisture, and ensures the safety of the operator.

In summary, a gas air compressor control panel typically includes a power switch, pressure gauges, control knobs or buttons, emergency stop button, motor start/stop buttons, control indicators, control panel display (if applicable), start/stop control circuit, safety and protection devices, and a control panel enclosure. These components work together to monitor and control the compressor’s operation, ensure safety, and provide essential information to the operator.

air compressor

What Safety Precautions Should Be Taken When Operating Gas Air Compressors?

Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:

1. Read and Follow the Manufacturer’s Instructions:

Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.

2. Provide Adequate Ventilation:

Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.

3. Wear Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.

4. Perform Regular Maintenance:

Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.

5. Preventive Measures for Fuel Handling:

If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:

  • Store fuel in approved containers and in well-ventilated areas away from ignition sources.
  • Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
  • Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
  • Never smoke or use open flames near the compressor or fuel storage areas.

6. Use Proper Electrical Connections:

If the gas air compressor requires electrical power, follow these electrical safety precautions:

  • Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
  • Avoid using extension cords unless recommended by the manufacturer.
  • Inspect electrical cords and plugs for damage before use.
  • Do not overload electrical circuits or use improper voltage sources.

7. Secure the Compressor:

Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.

8. Familiarize Yourself with Emergency Procedures:

Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.

It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.

China best Compressor for Oxygen Concentrator Low Power Consumption and Quick Connection   with Good qualityChina best Compressor for Oxygen Concentrator Low Power Consumption and Quick Connection   with Good quality
editor by CX 2024-04-10

China high quality Compressor for Oxygen Concentrator with Top Quality with high quality

Product Description

Compressor for Oxygen Concentrator with Top Quality            

  

Introduction

Oil-free Compressor for Oxygen Concentrator is a reciprocating piston with single function. It does not need to add lubricating oil, does not pollute pressurized oxygen, has a fully sealed structure, and runs without leakage. Bearings are all added with imported special grease to ensure durability of the Compressor for Oxygen Concentrator.

 

Main Technical Parameters

 

No. Item Data
1 Compressor model GOW-20/4-150
2 Compressor type V type, reciprocating piston, water cooled, air cooled
3 Compression medium oxygen
4 Volume flow 20nm3/h
5 Intake pressure 4bar
6 Exhaust pressure 150bar
7 Inlet temperature ≤40ºC
8 Exhaust temperature no more than ambient temperature +15ºC after cooling
9 Driving mode explosion-proof motor
10 External size (length × width × height) 1650*950*1470mm
11 Weight Weight

 

Operation of Oxygen Compressor

1. It is best to use soft water for cooling water to avoid the chemical reaction of calcium and magnesium plasma in water due to high temperature, which forms scale in the cooler and affects the heat transfer effect of the cooler. If the cooling water tower circulation system is used, the water must be regularly added softener to maintain clean water. Cooling water quality requirements are as follows:
(a) Suspended solids ≤100mg/L,
(b)PH value: Between 6.5-9,
(c) Hardness of silver carbonate ≤140.  (When the drainage temperature is 45ºC) 
The automatic supply system of cooling water circulation system must be perfected, otherwise, after several hours of operation, the cooling water quantity is insufficient, and the compressor will stop due to insufficient water pressure. The cooling tower should be placed to dissipate heat easily, well ventilated, and should be supported and fixed to prevent dumping. 
The water pressure of cooling water shall generally be maintained between 0.15-0.3mpa, not more than 0.4mpa, not less than 0.1mpa. 
Cooling water consumption: 40× gas value (Nm³/h) Unit: L/h. 
The cooling water outlet temperature should be kept below 40ºC, and the temperature difference between inlet and outlet water is 6-10ºC. 
When the Compressor for Oxygen Concentrator is not used for a long time or the ambient temperature is lower than 0ºC, the cooling water in the Compressor for Oxygen Concentrator should be released.
Cooling water pipe diameter should not be smaller than the compressor waterway diameter.
2. After the Compressor for Oxygen Concentrator is installed and assembled, confirm that it meets the installation and use requirements and then run it. 
3. Before the test run, check whether the bolts and nuts are loose. When the fingers press the middle of the belt, the belt can droop about 10mm, then the belt is suitable. 
4. Open the vent on the cut-off valve, through air and cooling water, the inlet pressure inflow pressure controller on state, connect the power supply, the instantaneous start the compressor, and check whether the same as indicated by the arrows, whether running smoothly, such as the above normal, let the compressor running more than 10 min, and then close the discharge valve, the gas buffer tank pressure will increase. At this time, soapy water can be used to test whether the exhaust pipe joint, cylinder head, regulating pipeline leakage, the leakage place is tightened. 
5. When the gas pressure in the exhaust buffer tank rises to the exhaust stop pressure, the pressure switch moves, cutting off the magnetic starter control loop, and the motor stops. If the gas pressure in the buffer tank does not increase, check whether the value of the pressure gauge at this time indicates the rated exhaust pressure; otherwise, it should be adjusted according to article
6. When the inlet gas pressure drops to the intake stop pressure, the intake pressure controller will act, cut off the control circuit, and the motor will stop. Check whether the position of the pressure indication value is lower than the intake stop pressure value, otherwise it should be adjusted.
7. When the work is over or the power line is cut off, cut off the compressor power supply. At the same time, cut off the cooling water, and drain the cooling water in the water cooling heat exchanger and the cylinder.

 

Oxygen Compressor Protection

 

1. The operator must hold the corresponding electrician operation certificate, and work under the guidance of electrical technicians. Power supply must be cut off before electrical maintenance, and special person monitoring and warning signs should be set up. 
2. During the operation of the Compressor for Oxygen Concentrator, do not touch the moving parts such as the transmission belt and fan wheel, and do not touch the cylinder wall, air pipe, and water pipe to avoid scalding.

 

Presentation

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: Medical
Noise Level: Low
Machine Size: Medium
Samples:
US$ 11530/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Is the Fuel Efficiency of Gas Air Compressors?

The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:

1. Engine Design and Size:

The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.

2. Load Capacity and Usage Patterns:

The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.

3. Maintenance and Tuning:

Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.

4. Operating Conditions:

The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.

5. Fuel Type:

The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.

6. Operator Skills and Practices:

The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.

It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.

Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.

air compressor

How Do Gas Air Compressors Contribute to Energy Savings?

Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:

1. Efficient Power Source:

Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.

2. Reduced Electricity Consumption:

Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.

3. Demand-Sensitive Operation:

Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.

4. Energy Recovery:

Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.

5. Proper Sizing and System Design:

Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.

6. Regular Maintenance:

Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.

7. System Optimization:

For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.

In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.

air compressor

How Do You Choose the Right Size Gas Air Compressor for Your Needs?

Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:

1. Required Airflow:

Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.

2. Operating Pressure:

Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.

3. Duty Cycle:

Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.

4. Tank Size:

The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.

5. Power Source:

Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.

6. Portability:

Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.

7. Noise Level:

If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.

8. Manufacturer Recommendations:

Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.

By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.

China high quality Compressor for Oxygen Concentrator with Top Quality   with high qualityChina high quality Compressor for Oxygen Concentrator with Top Quality   with high quality
editor by CX 2024-04-03

China Best Sales Gle210b 230W Air Compressor Oxygen Concentrator Mini Oxygen Gas Compressor for Oxygen Concentrators air compressor oil

Product Description

Product Paramenter

ITEM NO

GLE210B

Name

Oil free air compressor

Packing

4 pcs / carton case , 200 pcs / pallet

Weight

4.0 kg

Dimension

176*95*143 mm

Installation size

70*114 ( 4*M6) mm

 

 

 

 

 

Technical Specification

Voltage : AC220V 50Hz / 110V 60Hz 

Power: <=180 W ; 

Rated air flow rate: >=50 L/min @ 1.4 bar ;

Rate working pressure : 1.4 bar ; 

Restart pressure : 0 bar ; 

Noise : ≤45dB(A) ; 

Speed: 1440rpm / 1700rpm ; 

Temperature : -5ºC-40ºC ; 

Thermal protector : 135ºC ;

 Insulation class: B

Lubrication Style: Oil-free
Cooling System: Air Cooling
Capacity: 50 L/Min @ 1.4 Bar
Core Components: Engine, Motor
Air Capacity: 44L/Min
Configuration: Portable
Samples:
US$ 48/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Can Gas Air Compressors Be Used in Construction Projects?

Gas air compressors are widely used in construction projects due to their portability, versatility, and ability to provide the necessary compressed air for various applications. They are an essential tool in the construction industry, enabling the efficient and effective operation of pneumatic tools and equipment. Here’s a detailed explanation of how gas air compressors are used in construction projects:

1. Powering Pneumatic Tools:

Gas air compressors are commonly used to power a wide range of pneumatic tools on construction sites. These tools include jackhammers, nail guns, impact wrenches, concrete breakers, air drills, sanders, grinders, and paint sprayers. The compressed air generated by the gas air compressor provides the necessary force and power for efficient operation of these tools, enabling tasks such as concrete demolition, fastening, surface preparation, and finishing.

2. Air Blow and Cleaning Operations:

In construction projects, there is often a need to clean debris, dust, and dirt from work areas, equipment, and surfaces. Gas air compressors are used to generate high-pressure air for air blow and cleaning operations. This helps maintain cleanliness, remove loose materials, and prepare surfaces for further work, such as painting or coating.

3. Operating Pneumatic Systems:

Gas air compressors are employed to operate various pneumatic systems in construction projects. These systems include pneumatic control devices, pneumatic cylinders, and pneumatic actuators. Compressed air from the gas air compressor is used to control the movement of equipment, such as gates, doors, and barriers, as well as to operate pneumatic lifts, hoists, and other lifting mechanisms.

4. Concrete Spraying and Shotcreting:

Gas air compressors are utilized in concrete spraying and shotcreting applications. Compressed air is used to propel the concrete mixture through a nozzle at high velocity, ensuring proper adhesion and distribution on surfaces. This technique is commonly employed in applications such as tunnel construction, slope stabilization, and repair of concrete structures.

5. Sandblasting and Surface Preparation:

In construction projects that require surface preparation, such as removing old paint, rust, or coatings, gas air compressors are often used in conjunction with sandblasting equipment. Compressed air powers the sandblasting process, propelling abrasive materials such as sand or grit onto the surface to achieve effective cleaning and preparation before applying new coatings or finishes.

6. Tire Inflation and Equipment Maintenance:

Gas air compressors are utilized for tire inflation and equipment maintenance on construction sites. They provide compressed air for inflating and maintaining proper tire pressure in construction vehicles and equipment. Additionally, gas air compressors are used for general equipment maintenance, such as cleaning, lubrication, and powering pneumatic tools for repair and maintenance tasks.

7. Portable and Remote Operations:

Gas air compressors are particularly beneficial in construction projects where electricity may not be readily available or feasible. Portable gas air compressors provide the flexibility to operate in remote locations, allowing construction crews to utilize pneumatic tools and equipment without relying on a fixed power source.

Gas air compressors are an integral part of construction projects, facilitating a wide range of tasks and enhancing productivity. Their ability to power pneumatic tools, operate pneumatic systems, and provide compressed air for various applications makes them essential equipment in the construction industry.

Can Gas Air Compressors Be Used for Natural Gas Compression?

Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:

1. Different Compressed Gases:

Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.

2. Safety Considerations:

Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.

3. Equipment Compatibility:

Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.

4. Efficiency and Performance:

Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.

5. Regulatory Compliance:

Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.

6. Industry Standards and Practices:

The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.

In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.

Are There Different Types of Gas Air Compressors Available?

Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:

1. Reciprocating Gas Air Compressors:

Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.

2. Rotary Screw Gas Air Compressors:

Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.

3. Rotary Vane Gas Air Compressors:

Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.

4. Centrifugal Gas Air Compressors:

Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.

5. Oil-Free Gas Air Compressors:

Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.

6. Portable Gas Air Compressors:

Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.

7. High-Pressure Gas Air Compressors:

High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.

8. Biogas Air Compressors:

Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.

These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.

China Best Sales Gle210b 230W Air Compressor Oxygen Concentrator Mini Oxygen Gas Compressor for Oxygen Concentrators   air compressor oilChina Best Sales Gle210b 230W Air Compressor Oxygen Concentrator Mini Oxygen Gas Compressor for Oxygen Concentrators   air compressor oil
editor by CX 2023-10-05

China supplier Silent 75L/Min 2bar Portable Air Compressor 320W for 5L Oxygen Concentrator near me factory

Item Description

Solution Parameter

Pick an Air Compressor for Your Enterprise

There are many factors to contemplate when selecting an air compressor for your enterprise. 1 factor to contemplate is the sort of compressor you are seeking for, which may consist of solitary-phase, reduced noise, and constructive displacement. Hope this write-up helps you make the correct determination. After all, your business success will count on this system! Let’s just take a closer appear at these elements. Also, contemplate what compressor makers say about their items.
air-compressor

Positive displacement

Constructive displacement air compressors compress air by drawing in a quantity from an inlet and extruding it out of a chamber. This raises the strain at which the fuel can be pumped at rates that are not able to be pumped via the outlet at reduce pressures at greater mass movement costs. These types of compressors are available in solitary-performing and double-acting configurations. They are categorized by the variety of cylinders.
There are two various kinds of air compressors: reciprocating air compressors and screw compressors. The two are roll devices. Good displacement air compressors use pistons and cylinders to compress air. The ensuing air force builds up inside of the compressor housing, growing the potential power of the compressed air. Screw air compressors are the most popular good displacement air compressors, which can be both single-phase screw-blade air compressors or multi-phase screw-blade oil-immersed screw air compressors.
Optimistic displacement flowmeters use a rotating measuring chamber to divide the fluid into discrete portions. The amount of moments the chamber was refilled and emptied was employed to estimate the complete stream. Even so, good displacement stream meters are vulnerable to leaks, decreasing the precision of the estimates. If a leak happens, it can trigger false readings and harm the compressor. Even so, leaks in good displacement air compressors can minimize pressure.
The most common types of good displacement air compressors are screw, reciprocating, and vane. Rotary good displacement air compressors are also offered as effectively as numerous other air compressors. Optimistic displacement air compressors are most typically utilised in massive production facilities. If you are considering an air compressor for industrial or industrial apps, it is critical to realize how the components of the device work. Make sure you read through the data below to learn far more ahead of determining which application is greatest for you.
Optimistic displacement air compressors use a piston to drive air into a chamber, compressing the air in the process. The piston moves in the opposite direction, therefore reducing the volume of the chamber. When the volume of air in the chamber reaches its greatest value, the valve opens, making it possible for it to escape at greater force. Positive displacement air compressors are generally considerably less successful than centrifugal compressors. Nonetheless, they are nevertheless an exceptional decision for a selection of apps.
air-compressor

One-stage

The discharge force of the one-stage air compressor is employed to handle the operation of the compressor. Correctly created load/unload controls let the air compressor to operate at its most effective stage even though minimizing pressure on the primary motor bearings. One-stage air compressors can method variable pace performance with suitable storage capability. Nevertheless, poor storage can result in untimely bearing wear on the primary device. If this is the circumstance, a single-phase air compressor might not be ideal.
A single-stage air compressor has only one cylinder, which indicates a single stroke is needed to go air from a single cylinder to one more. Strain is calculated in cubic feet for every minute or CFM. Tank measurement is also important as a massive one-stage air compressor could be essential to run multiple air tools. Single-stage air compressors can be employed in a variety of apps and can previous for years.
For the most common employs, solitary-phase air compressors are the most functional choice. These devices operate with most hand resources, from hammers to grinders. Solitary-stage air compressors are lightweight and effortless to transfer. Nonetheless, two-stage air compressors supply more CFM, producing them a much better selection for industrial or business use. Nonetheless, two-stage compressors are not ideal for personal use. Consequently, if your principal goal is Diy and craft projects, it is much better to choose a single-phase air compressor.
When compared with two-stage air compressors, one-stage screw air compressors are cheaper. They occur from a range of companies and assortment in power from 3 to 600 horsepower. One-phase air compressors are a value-successful remedy for a assortment of air compressor requirements. They offer adaptability and multiple control approaches, generating them an superb decision for a lot of distinct apps. Therefore, when selecting an air compressor for your organization, decide on the one with the most appropriate capabilities.
Solitary-phase air compressors are the most affordable and easy-to-use air compressors for small to medium positions. They also have greater compression ratios. The compression ratio is the ratio of complete discharge stress to complete inlet force. When calculating the ratio, it normally takes into account atmospheric stress and gauge strain. The compression ratio pushes the area region of ​​the rotor, which boosts the thrust load.
One-stage air compressors are smaller sized and simpler to transportation than two-stage units. One-phase air compressors have a single air intake, and two-phase air compressors have two air intakes. The variation amongst single-phase and two-phase air compressors largely is dependent on the number of times the air is compressed. A single-phase air compressor compresses the air after, even though a twin-stage air compressor compresses the same sum of air two times.
air-compressor

low sound

Lower sounds air compressors are excellent for a selection of purposes. Whilst no air compressor is totally silent, some versions are much quieter than other individuals. For the Hitachi EC28M transportable compressor, the noise degree is fifty nine decibels. The compressor functions metal rollers that safeguard the internal components and give it a modern, modern look. It also has a a single-gallon fuel tank and a fifty percent-horsepower generate.
Sounds from air compressors can be distracting and minimize productivity. It is essential to decide on reduced-sounds air compressors to keep personnel healthy and satisfied at operate. While sounds is an regrettable element of working on the store flooring, decreasing it can improve productivity. By decreasing distracting sound, workers can emphasis on their perform and communicate more successfully. That means larger quality work and happier consumers. If you’re hunting for a minimal-sounds air compressor, be sure to read through the tips below.
Reduced sound air compressors are an superb decision for businesses of all sizes. These strong instruments can run several tools simultaneously. The two water tanks are produced of rust-resistant aluminum and are stackable. This air compressor is heavier and can take care of massive employment with ease. It fees far more than other air compressors, but it can handle a lot of operate successfully. CZPT Air Resources air compressors come with a one particular-12 months warranty and are hugely advisable by contractors.
Noiseless air compressors are generally more pricey than comparable goods, but they are worth the added value. Noiseless compressors are a excellent choice for firms that need to have to steer clear of disturbing close by people. For example, you may well want to consider a reduced-sounds air compressor for a dental business office, which cannot tolerate noise. The good news is, this problem can be solved by relocating the compressor to a place that is far more isolated from your workspace.
One particular model of low-sounds air compressors delivers two versions. The CZPT Air Tools 2010A attributes a massive forged aluminum can, regulating pressure gauge, and two common quick-connects. It produces 68 decibels of sounds when it operates. It has a large 8-gallon gasoline tank potential and has wheels and handles for effortless transportation. Its potent engine makes a lower sounds degree of 68 decibels.
One more popular reduced sound air compressor is the Makita MAC210Q Peaceful Series. This product is able of creating up to 71.5 decibels of sound, which is the amount of air it creates at 90PSI. The MAC210Q attributes a tough oil-free of charge pump and weighs just 36 kilos with a manage and wheels. These compressors are straightforward to transfer and ideal for indoor perform.
China supplier Silent 75L/Min 2bar Portable Air Compressor 320W for 5L Oxygen Concentrator     near me factory China supplier Silent 75L/Min 2bar Portable Air Compressor 320W for 5L Oxygen Concentrator     near me factory